Depletion potential between large spheres immersed in a multicomponent mixture of small spheres.
نویسندگان
چکیده
We analyze the depletion potential between large spheres in a multicomponent mixture of dense small spheres (up to seven components) using the integral equation theory (IET), in which semiempirical bridge functions are incorporated, and the insertion approach within the framework of density functional theory (DFT). The diameters of the small spheres considered are in the range of d(S)-5d(S). The results from the IET and DFT are in close agreement with each other. The depletion potential in the mixture is substantially different from that in a one-component system of dense small spheres with diameter d(S). In comparison with the latter, the former possesses in general a less pronounced oscillatory structure, and the free-energy barrier for large spheres to overcome before reaching the contact is significantly reduced. This tendency can be enhanced as the number of components increases. In a several-component mixture of small spheres whose diameters are suitably chosen and in which the packing fractions of the components share the same value, the depletion potential is essentially short ranged and attractive and possesses a sufficiently large, negative value at the contact.
منابع مشابه
Direct Measurement of Depletion Potentials in Mixtures of Colloids and Nonionic Polymers
In colloidal suspensions containing a binary mixture of hard spheres depletion forces occur which substantially contribute to the interaction of the larger spheres among themselves and a wall, respectively. We investigated the depletion force acting on a large colloidal polystyrene sphere immersed in a solution of small, noncharged polymer coils close to a flat glass surface by means of total i...
متن کاملPhase Behavior and Structure of Binary Hard-Sphere Mixtures
By integrating out the degrees of freedom of the small spheres in a binary mixture of large and small hard spheres, we derive an explicit effective Hamiltonian for the large spheres. Using the two-body (depletion potential) contribution to this effective Hamiltonian in simulations, we find stable fluid-solid and both metastable fluid-fluid and solid-solid coexistence in a mixture with size rati...
متن کاملLarge attractive depletion interactions in soft repulsive-sphere binary mixtures.
We consider binary mixtures of soft repulsive spherical particles and calculate the depletion interaction between two big spheres mediated by the fluid of small spheres, using different theoretical and simulation methods. The validity of the theoretical approach, a virial expansion in terms of the density of the small spheres, is checked against simulation results. Attention is given to the app...
متن کاملDepletion force in the infinite-dilution limit in a solvent of nonadditive hard spheres.
The mutual entropic depletion force felt by two solute "big" hard spheres immersed in a binary mixture solvent of nonadditive "small" hard spheres is calculated as a function of the surface-to-surface distance by means of canonical Monte Carlo simulations and through a recently proposed rational-function approximation [R. Fantoni and A. Santos, Phys. Rev. E 84, 041201 (2011)]. Four representati...
متن کاملA Numerical Study of Flow and Heat Transfer Between Two Rotating Vertically Eccentric Spheres with Time- Dependent Angular Velocities
The transient motion and the heat transfer of a viscous incompressible flow contained between two vertically eccentric spheres maintained at different temperatures and rotating about a common axis with different angular velocities is numerically considered when the angular velocities are an arbitrary functions of time. The resulting flow pattern, temperature distribution, and heat transfer char...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 125 8 شماره
صفحات -
تاریخ انتشار 2006